EFFECT OF TRANSVERSE BLOWING ON STEADY
FLOW BETWEEN ROTATING AND STATIONARY DISKS

N. V. Petrovskaya UDC 532.516

A numerical study has been made on the effect of transverse blowing on a steady, incompressible, viscous
flow between two infinite coaxial disks, with one of them rotating at an angular speed w. The fluid is injected
through the stationary disk at a constant velocity u. In studying the fluid flow near one infinite rotating disk,
assuming self-similar solution for the flow [1], the determination of the velocity components reduces to the
solution of the boundary-value problem for the system of ordinary differential equations.

The problem has been well studied in the absence of blowing (see, e.g., [2-8]). Various assumptions on
the nature of the flow at high Reynolds number Re =wd?®/v d, distance between the disks; v, viscosity) were
discussed even in the very first papers [2, 3]. According to [2], the flow has two boundary layers attached to
the two disks and the fluid in between them rotates as a rigid body. ’

Arguments in favor of the existence of another type of flow whose characteristic feature is the absence
of the rotating fluid outside the boundary layer on the rotating disk have been made in [3]. Tn what follows,
solutions with the above features will be denoted by solution type B and solution type S, respectively.

Later investigations [4-8] showed that there are a number of continuous branches of the solution depend-~
ing on Re. According to [5], only one of them exists for all Re » 0, For large Re, its solutions are of the type
B; it is more convenient to call it the B-branch. The other continuous branch whose solution at large Re are
of the type S exists only when Re > Re; 2217. Laminar boundary layer velocity profiles observed in experi-
ments at Re <2000 agree with the numerical results belonging to the B~branch [5-7].

The effect of uniform blowing through the stationary disk on the nature of the flow has been studied in
this paper. The solution belonging to the B~branch was chosen for this purpose for a number of Re and it was
then continuously extended with respect to the parameter U=ud/v (blowing Reynolds number) from U =0 to
U =Re.

This problem was already considered in [9, 7] for the range Re< 100, whereit was shown that with an
increase in blowing, the angular and radial components of flow velocity tend to zero in the region outside the
boundary layer on the rotating disk while the nature of the flow is continuously varied.

A wider range of Reynolds number 0<Re <700 is considered in the present paper. It appears that the
qualitative behavior of the solution with increased blowing appreciably depends on the value of Re: when Re >
Rex 22170 the continuity in the variation of the flow characteristics with increase in U is broken. Computations
for Re > Rex show that for a certain interval (U4, U,) of U, there are three solutions belonging to one continuous
branch. A branching takes place at the boundaries of this interval: A pair of solutions appear at one end and
on the other it disappears.* The curves describing the flow as a function of blowing velocity U become S-
shaped. According to the well-known conclusions of bifurcation theory, the upper and the lower segments of
the curve correspond to stable flow, at least in the class of rotationally symmetric disturbances, and the middie
section corresponds to unstable flow.

As U, increasing from zero, passes through the point U,, the flow structure is suddenly altered. The
boundary layer attached to the stationary disk disappears and the flow outside the boundary layer on the rotating
disk tends to become purely axial.

*The singularity referred to as collapse in catastrophy theory corresponds to the bifurcation values Uy, U,.
Probably, the most well-known example of such a bifurcation is the collapse of elastic shells. This is a com-
mon bifurcation. We ohserve that the majority of bifurcations encountered in hydrodynamic stability theory
(Taylor vortices, Benards convective cells, etc.) is associated with special symmetry and is not the general
bifurcation,
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Similar phenomenon is observed when U decreases from U=Re. Inthe interval Uy, Re) solutions are
characterized by single boundary layer on the rotating disk and an absence of rotation outside it. When pass-
ing through the point Uy, the boundary layer on the rotating disk and the rotation in the core of the flow appear
suddenly.

1. Formulation of the Problem

Cylindrical coordinates {r, 6, z) are used. Let the disks be located in the planes z =0 and z =d; the former
rotates at a constant angular speed w, the second is stationary, and the fluid is injected through it at a constant
velocity u.

We investigate axisymmetric flows described by Navier ~Stokes equations in the layer 0=z =d, with a
velocity field v=(vy, vg, v,)
vy = rol(z), vy = reGz), v, = vd-1H(z,),

where z, =z/d; v is the kinematic viscosity. Functions F, G, and H satisfy the equation

F'" = HF + Re(F* — G% + §, ¢" = HG’ + 2 Re FG, H' = —2 Re F (1.1)
and the boundary conditions
F(0) = 0, G(0) =1, H(0) =0, 1.2)
F(1) =0, 6(1) =0, H(1) = -0,
where Re =wd®/v is the Reynolds number; U=ud/» is the Reynolds number based on blowing velocity; S is an
unknown constant. If the boundary-value problem (1.1) (1.2) is solved, then the pressure p is determined from
the equation
2_ ¥ (B — 5 H?) o 2 gy
P4 ZH T o
where p is the fluid density.

2. Computational Results

The boundary-value problem (1.1) (1.2) is solved by shooting technique combined with a continuationabout
the blowing parameter U at fized Re €(0,700), The parameter U was varied from zero, which corresponds to
the B~branch solution, to values of the order of Re.

The quantity W= —G' (0) Re "2 was chosen to represent the nature of the flow. Its dependence on U for Re=
36, 169, 289, and 529 is shown in Fig. 1 (curves 1-4, respectively), where the coordinate axes are URe™1/? and
W.

At low Re this relation is nearly linear (curve 1 in Fig. 1). However, with an increase in Re its nature
is strongly altered. When Re > Re, =170, the curves take up the characteristic S-shaped form (curves 3, 4 in
Fig. 1). For each Re > Re, there is such an interval (U;, U,) of U that for U € Uy, U,) the problem (1.1), (1.2)
has three solutions belonging to one continuous branch, and when U & [U,, U,] there is only one solution. The
limits of the interval are the branch points of the solution to the problem (1.1) (1.2): when U =Uj, a pair of
solutions appear and when U =0, it disappears (with increase in U).
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Points on the plane (Re, U), for which the problem has three solutions (fromthe family under consider’—
ation), form the region @ shown in Fig. 2. At the point of intersection P(Re*U*), U* =(0,80, the lines bound-
ing the region make an angle of the order of 3/2.

Let us fix Re > Re " and investigate how the nature of the flow varies along the continuous branch that
depends on the parameter U (for Re<Re*, this was done in [9]). Points A, B, C, and D are indicated incurve
4 in Fig. 1 (Re =529). The corresponding values of F(z) and Gz;) are shown in Figs.3 and 4.

The lower parts of the curve 4 (between the points A and B} correspond to the solution of the type B
with two boundary layers attached to the disks. In the absence of blowing (point A) the boundary layers are -
separated by a core in which the fluid rotates like a rigid body. As we move along the curve 4 from the point
A to the point B 0 =U=1,), there is an increase in the thickness of the boundary layer attached to the station-
ary disk. The point B corresponds to the merging of the boundary layers. On moving from the point B to the
point C (U, =U=U,), the boundary layer near the stationary disk disappears.

Solutions of the type S with one boundary layer attached to the rotating disk correspond to the upper part
of the curve 4. On moving along the curve 4 from the point C to the point D the flow in the region outside the
boundary layer tends to become purely axial. The point D is given by the solution to the Karman problem on
the flow near a freely rotating infinite disk.

"~ Further increase in blowing leads to the appearance of radial outflow of fluid frpm the axis in the entire
region outside the boundary layer of the rotating disk. When U is of the order of Rel/?, the radial velocity
distribution in this region becomes linear. Rotation is observed only in the boundary layer (curves E in Figs.

3 and 4).

Thus, the case of large Reynolds numbers (Re > 170) is characterized by the following features. Firstly,
a small amount of blowing 0<U<U,) leads not to a decrease in radial and tangential components of the velocity
near the stationary disk @s in the case Re =100, discussed in [9, 7]), but to an increase in the intensity of flow
init. Secondly, with a monotonic variation in the blowing parameter, a sudden alteration in the flow and the
hysterisis phenomenon are observed.

The author gratefully acknowledges the constant attention given by V. L. Yudovich to the study, and F. G
Berezovskaya for useful discussions.
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EXACT SOLUTION FOR A HIGH-TEMPERATURE JET

A. A. Bobnev UDC 532.526

High-temperature gas (plasma) jets are widely used in modern technology and the jet is often laminar
(see, e.8. [11). The Dorodnitsyn transformation used in the study of nonisothermal jets [2], is useful for plane
flows with certain limitations placed on the thermophysical properties of the gas and, besides, it is difficult
to convert the Dorodnitsyn variables to physical coordinates. An exact similarity solution within the frame-
work of boundary~layer approximations is given in this paper for the nonisothermal axisymmetric flow in the
region where the temperature at the jet axis is appreciably higher than the temperature at infinity.

The problem describing the efflux of a nonisothermal jet from a cylindrical orifice can be written within
the framework of boundary-layer approximations in the form

10 ow (0w wy 19 9 ; t 9 o a7 ar . @)
= “‘p(”'ﬁ'*"sz‘)t T v+ 5 pw =0, 9[2117717-"_6? =PI‘P(U—5;—+W~5;)7
_w _aT ., _ @)
v=gr =g =0 & r=0
T=¢ w=0 a r—oo. @)

Here r, zRe are cylindrical coordinates (r, z are the inner coordinates inthe asymptotic expansion in
terms of the small parameter Re"i); Re = Vm/px is a certain analogous Reynolds number; VRe~1, W
are the longitudinal and transverse velocity components; Pr:CpM“M/ Ay is the Prandtl number; € is the value
of the temperature at infinity; the rest are conventional quantities, In order to nondimensionalize, the quantities
Typ Pape CpMe» KMs and Ay (dimensional quantities are denoted by the subscript M), and also the values of total
impulse Ijp and flow enthalpy Ly given by the equations

[

Iy = 2mpuVELY S owrdr, Tom == 2mCpupuTyVuly f pw (T —e)rdr
0 0

are assumed specified. The reference scales for the velocity Vy; and the length Ly; are given by
Vi = egulad vl Ty L = T/ (con Tt V250l o).

In writing Eqgs. (1) it was assumed that the specific heat, thermal conductivity, and dynamic viscosity are con~
stants. For the problem (1)-¢3) the initial conditions should have been fixed at z =z, but in the present study
only similarity solutions will be considered and hence in order to complete the set of equations for the problem
1)-@3), we formulate conditions for the conservation of momentum and enthalpy

oo o

S puwtrdr = 1, S ow (T — &) rdr = 1. “)

0 0

The problem (1)-(4) will be considered as £ ~0. In the zeroth-order approximation in terms of €, the problem
(1)- @) is transformed to the system of equations (1), boundary conditions @), and

w=7=0 as r— oo (5)
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