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A numer ica l  study has been made on the effect of t r a n s v e r s e  blowing on a s teady,  incompress ib le ,  viscous 
flow between two infinite coaxial d isks ,  with one of them rotat ing at an angular  speed o~. The fluid is injected 
through the s ta t ionary  disk at a constant  veloci ty u. In studying the fluid flow near  one infinite rotat ing disk,  
assuming s e l f - s i m i l a r  solution for  the flow [1], the de terminat ion  of the veloci ty  components reduces  to the 
solution of the boundary-value  p rob lem for  the s y s t e m  of ord inary  different ial  equations.  

The p rob lem has been well  studied in the absence  of blowing (see, e.g. ,  [2-8]). Various assumpt ions  on 
the nature of the flow at high Reynolds number  Re =wd2/v (d, dis tance between the disks;  v, viscosi ty)  we re  
d iscussed  even in the very  f i r s t  paper s  [2, 3]. According to [2], the flow has two boundary l aye r s  at tached to 
the two disks and the fluid in between them ro ta tes  as a r igid body. 

Arguments in favor  of the exis tence of another  type of flow whose c h a r a c t e r i s t i c  fea ture  is the absence  
of the rotat ing fluid outside the boundary l a y e r  on the rotat ing disk have been made  in [3]. In what follows, 
solutions with the above fea tu res  will be denoted by solution type B and solution type S, r e spec t ive ly .  

La te r  invest igations [4-8] showed that the re  a re  a number  of continuous b ranches  of the solution depend-  
ing on Re. According to  [5], only one of t hem exis ts  for  all Re > 0. For la rge  Re, i ts  solutions a r e  of the type 
B; it is m o r e  convenient to call it the B-branch .  The other continuous branch whose solution at l a rge  Re are  
of the type S ex is t s  only when Re > Re I - 2 1 7 .  Lamina r  boundary l aye r  veloci ty p rof i l es  observed  in ex p e r i -  
m e s s  at Re < 2000 ag ree  with the numer ica l  r esu l t s  belonging to the B-branch [5-7]. 

The effect of uni form blowing through the s ta t ionary  disk on the nature  of the flow has been studied in 
this paper .  The solution belonging to the B-branch  was  chosen for  this  purpose  for  a number  of Re and it was  
then continuously extended with r e spec t  to the p a r a m e t e r  U =ud/v (blowing Reynolds number)  f r o m  U =0 to 
U = Re. 

This p rob lem was  a l ready considered in [9, 7] for  the range Re_< 100, w h e r e i t  was  shown that with an 
inc rease  in blowing, the angular  and radia l  components  of flow veloci ty tend to ze ro  in the region outside the 
boundary l aye r  on the rotat ing disk while the nature  of the flow is continuously var ied .  

A wider  range of Reynolds number  0 < R e < 7 0 0  is cons idered  in the p resen t  paper .  It appea r s  that the 
quali tat ive behavior  of the solution with inc reased  blowing apprec iab ly  depends on the value of Re: when Re > 
R e ,  ~170 the continuity in the var ia t ion  of the flow c h a r a c t e r i s t i c s  with inc rease  in U is broken.  Computat ions 
for  Re > R e ,  show that for  a ce r t a in  interval  (U l, U =) of U,  t he r e  a re  th ree  solutions belonging to one continuous 
branch.  A branching takes  place at the boundar ies  of this in terval :  A pa i r  of solutions appear  at one end and 
on the other  it d i s appea r s .*  The curves  descr ib ing  the flow as a function of blowing veloci ty U become S- 
shaped.  According to the wel l -known conclusions of b i furcat ion theory ,  the upper  and the lower  segments  of 
the curve  cor respond  to s table  flow, at l eas t  in the c lass  of rotat ional ly s y m m e t r i c  d i s tu rbances ,  and the middle 
sect ion cor responds  to unstable flow. 

As U, increas ing  f rom zero ,  p a s s e s  through the point U2, the flow s t ruc tu re  is suddenly a l te red .  The 
boundary l a y e r  at tached to the s ta t ionary  disk d i sappears  and the flow outside the boundary l aye r  on the rotat ing 
disk tends to become purely  axial .  

*The s ingular i ty  r e f e r r e d  to as col lapse in ca tas t rophy theory  cor responds  to the bi furcat ion values U1, U 2. 
Probably ,  the mos t  wel l -known example  of such a bi furcat ion is the col lapse  of e las t ic  shel ls .  This is a c o m -  
mon bifurcat ion.  We obse rve  that the ma jo r i t y  of bifurcat ions encountered in hydrodynamic  s tabi l i ty  theory  
(Taylor vor t i ces ,  Benards convect ive cel ls ,  etc.) is assoc ia ted  with special  s y m m e t r y  and is not the genera l  
bifurcat ion.  
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Similar phenomenon is observed when U decreases  f rom U =Re. Inthe interval ([51, Re) solutions are  
character ized by single boundary layer  on the rotating disk and an absence of rotation outside it. When pass -  
ing through the point UI, the boundary l ayer  on the rotating disk and the rotation in the core of the flow appear 
suddenly. 

1.  F o r m u l a t i o n  of  t h e  P r o b l e m  

Cylindrical  coordinates {r, 0, z) are  used. Let the disks be located in the planes z =0 and z =d; t h e f o r m e r  
rotates  at a constant angular speed ~o, the second is s tat ionary,  and the fluid is injected through it at a constant 
velocity u. 

We investigate ax isymmetr ic  flows descr ibed by Nav ie r -S tokes  equations in the layer  0-< z-< d, with a 
velocity field v = (v r ,  v 0, v z) 

~'r = r~ Vo = r(og(zl), Vz = vd - lH(z l ) ,  

where z 1 =z/d;  v is the kinematic viscosi ty.  Functions F, G, and H satisfy the equation 

F . . . .  t l F '  -l- fle(F 2 - -  G 2) q- S ,  G " =  HG'  q- 2 Re FG, H' = --2 Re F (1.1) 

and the boundary conditions 

F ( 0 )  := 0,  C(0)  = i ,  I t (O)  = O, ( 1 . 2 )  

Fd) = 0, G(l) = 0, Hal) = - u ,  

where Re = w d 2 / v  is the Reynolds number;  U = u d / v  is the Reynolds number based on blowing velocity; S is an 
unknown constant. If the boundary-value problem (1.1) (1.2) is solved, then the p res su re  p is determined f rom 
the equation 

p 'v ~ ~, -2(11'--1 H2 ) , or~ -p  - -t- ~ ~ r  ,, 
g'T ~. 

where p i s  the fluid density.  

2 .  C o m p u t a t i o n a l  R e s u l t s  

The boundary-value problem (1.1) (1.2) is solved by shooting technique combined with a continuationabout 
the blowing pa ramete r  U at fized Re E (0,700). The pa rame te r  U was varied f rom zero,  which corresponds  to 
the B-branch solution, to values of the o rder  of Re. 

The quant[ tyW= - G '  (0)Rc-1/2was chosen to represent  the nature of the flow. Its dependence on U for Re = 
36, 169, 289, and 529 is shown in Fig. 1 (curves 1-4, respectively),  where the coordinate axes are  URe-1/2 and 
W. 

At low Re this relat ion is nearly l inear (curve 1 in Fig. 1). However, with an increase  in Re its nature 
is s trongly a l tered.  When Re > R e ,  ~170, the curves take up the charac te r i s t i c  S-shaped form {curves 3, 4 in 
Fig. 1). For each Re > R e ,  there  is such an interval (UI, U2) of U that for U E {U1, U 2) the problem (] .1), {1.2) 
has three  solutions belonging to one continuous branch, and when U ~  [U1, U2] there  is only one solution. The 
l imits  of the interval are  the branch points of the solution to the problem (1.1) (1.2).. when U =UI, a pair  of 
solutions appear and when U =U 2 it d isappears  {with increase  in U). 

o,~2 ...... ! .......... r . . . . .  

, ! ! 
0 O,Z o.6 URe f12 1,o 

Fig. 1 

{ 

0 

. . . .  

p# 

200 4-00 Re 

Fig. 2 

645 



i / \  I i I 

o !  \ \I A 

t . . . .  J . . . .  i . . . . .  5 3 2 - 1 2 2  

I i i  VJ' 
' ! ! ..... 

- 0 75 L . . . . . . .  i . . . . . . . . . .  ; . . . . .  ~ . . . .  

o o,25 o,75 z I 

Fig. 3 

G(z,) 

0175 

o,2~ 

0~25 oJ5 Z z 

Fig. 4 

Points on the plane (Re, U), for  which the p rob lem has th ree  solutions ( f romthe family  under cons ide r -  
ation), f o r m  the region Q shown in Fig. 2. At the point of in te rsec t ion  P ( R e , U , ) ,  U ,  =0.80, the l ines bound- 
ing the region make  an angle of the o rder  of 3 /2 .  

Let us fix Re > R e .  and invest igate how the nature  of the flow va r i e s  along the continuous branch that 
depends o n t h e  p a r a m e t e r  U (for R e < R e , ,  this  was done in [9]). Points A, B, C, and D a r e  indicated incurve  
4 in Fig. 1 (Re =529). The corresponding values of F(z l) and G(zl) a r e  shown in F igs .3  and 4. 

The lower  pa r t s  of the curve  4 {between the points A and B) cor respond  to the solution of the type B 
with two boundary l a y e r s  at tached to the d isks .  In the absence of blowing (point A) the boundary l a y e r s  a re  
separa ted  by a core  in which the fluid ro ta tes  l ike a r igid body. As we move along the curve  4 f r o m  the point 
A to  the point B (0 _ U-< U2), the re  is an inc rease  in the th ickness  of the boundary l aye r  at tached to the s ta t ion-  
a ry  disk.  The point B cor responds  to the merg ing  of the boundary l a y e r s .  On moving f r o m  the point B to the 
point C (U 1--< U ~ U2), the boundary l aye r  near  the s ta t ionary  disk d i s appea r s .  

Solutions of the type S with one boundary l a y e r  attached to the rotat ing disk cor respond  to the upper  par t  
of the curve  4. On moving along the curve  4 f r o m  the point C to the point D the flow in the region outside the 
boundary l aye r  tends to become  pure ly  axial .  The point D is given by the solution to  the Ka rman  p rob lem on 
the flow near  a f r ee ly  rotat ing infinite disk.  

Fur the r  inc rease  in blowing leads to the appearance  of radial  outflow of fluid f rom the axis in the ent i re  
region outside the boundary l aye r  of the rotat ing disk.  When U is of the o rde r  of Re1/2, the radia l  velocity 
dis tr ibut ion in this region becomes  l inear .  Rotation is observed only in the boundary l aye r  (curves E in Figs.  
3 and 4). 

Thus, the case  of l a rge  Reynolds numbers  (Re > 170) is cha rac te r i zed  by the following f ea tu re s .  F i r s t ly ,  
a smal l  amount of blowing {0 < U < U 2) leads  not to a dec r ea se  in radia l  and tangential  components  of the veloci ty 
near  the s ta t ionary  disk (as in the case  Re <- 100, d iscussed  in [9, 7]), but to an inc rease  in the intensity of flow 
in it. Secondly, with a monotonic var ia t ion  in the blowing p a r a m e t e r ,  a sudden a l tera t ion in the flow and the 
h y s t e r i s i s  phenomenon a re  observed .  

The author grateful ly  acknowledges the constant attention given by V. L Yudovich to the study, and F. O 
Berezovskaya  for  useful d i scuss ions .  
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E X A C T  S O L U T I O N  F O R  A H I G H - T E M P E R A T U R E  J E T  

~.  A. B o b n e v  UDC 532.526 

H igh - t empe ra t u r e  gas (plasma) je ts  a r e  widely used in modern  technology and the jet is often l amin a r  
(see, e.g. ,  [117o The  Dorodnitsyn t r a n s f o r m a t i o n  used in the study of nonisothermal  jets  [2], is useful for  plane 
flows with ce r ta in  l imi ta t ions  placed on the the rmophys ica l  p rope r t i e s  of the gas and, bes ides ,  it is difficult 
to convert  the Dorodni tsyn var iab les  to physical  coordinates .  An exact s imi l a r i t y  solution within the f r a m e r  
work  of bounda ry - l aye r  approximat ions  is given in this  pape r  for  the noniso thermal  a x i s y m m e t r i c  flow in the 
region where  the t e m p e r a t u r e  at the jet axis is apprec iab ly  higher than the t e m p e r a t u r e  at infinity. 

The p rob lem descr ib ing  the efflax of a nonisothermal  jet f r o m  a cyl indr ical  orif ice can be wr i t ten  within 
the f r a m e w o r k  of bounda ry - l aye r  approx imat ions  in the fo rm 

t 0 0 w  ( Ow Ow) t 0 0 1 0 01" ( Or WOT]; (17 
r orr-87"r = p  v-~;'r +W-'~-z~ r - ~ r r p V + T z p w = O ,  p r = l ~ r - 5 7 r ~ 7  = P r p  v-~-r+ oz) 

Ow OT (2) 
v=--gr--=-~-r = 0  at r = 0 "  

T---e, w = 0  as r ~ .  (3) 

Here  r ,  zRe a re  cyl indr ical  coordinates  (r, z a r e  the inner coordinates  inthe asympto t ic  expansion in 
t e r m s  of the smal l  p a r a m e t e r  Re-t) ;  f t e =  l/'~Ii~,/2~/g~ is a ce r ta in  analogous Reynolds number;  vRe -~, w 
a re  the longitudinal and t r a n s v e r s e  veloci ty components;  P r  =CpM#M/)t M is the Prandt l  number;  e is the value 
of the t e m p e r a t u r e  at infinity; the r e s t  a r e  conventional quant i t ies ,  In o rde r  to nondimensional ize ,  the quanti t ies 
TM, PM' CpM, #M, and X M (dimensional quanti t ies  a re  denoted by the subscr ip t  M), and also the values of total  
impulse  IIM and flow enthalpy I2M given by the equations 

I,~ = 2~p~V~L~ S pw2rdr,: In, = 2ncp~pMT~V~L~ .[ pw (T -- e 7 rdr 
0 0 

ave a s sumed  specif ied.  The r e f e r ence  sca les  fo r  the velocity V M and the length L M a re  given by 

In wri t ing Eqs. (1) it was  assumed  that the specif ic  heat,  t h e rma l  conductivity, and dynamic v i scos i ty  a r e  con-  
s tants .  For  the p rob lem (17-(37 the initial conditions should have been fixed at z =z 0 but in the presen t  study 
only s imi l a r i t y  solutions will be considered and hence in o rde r  to complete  the set  of equations for  the p rob lem 
(17-(3), we fo rmula te  conditions for  the conserva t ion  of momen tum and enthalpy 

0 0  

pw'rdr=t ,  ~ pw(T- -e ) rdr -~ t .  (4) 
0 o 

The p rob lem (1)-(4) will be considered as e ~ 0 .  In the z e r o t h - o r d e r  approximat ion  in t e r m s  of e ,  the p rob lem 
(1)-(4) is t r a n s f o r m e d  to the s y s t e m  of equations (1), boundary conditions (27, and 

w =  r = 0  as r - + c c ;  (5) 
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